

Traffic Impact Study

Tipton Mixed Use Development

Love's Travel Stops \& Country Stores
10601 N. Pennsylvania Avenue
Oklahoma City, Oklahoma 73120

PREPARED
CHRISTOPHER B. BURKE ENGINEERING, LLC

PNC Center
115 W. Washington St.
Suite 1368 South Tower
Indianapolis, IN 46204

Application No.:
June 22, 2015

Table of Contents

Section Title
 Page Number

Table of Contents.. 1
List of Figures... 2
List of Tables... 2
List of Appendices.. 3
Preparer Qualifications ... 4

1. Study Purpose and Executive Summary ... 5
1.1. Purpose of Report and Study Objectives .. 5
1.2. Executive Summary.. 6
2. Proposed Development and Area Conditions...................................... 8
2.1. Subject Site .. 8
2.2. Proposed Development... 12
3. One Year Development Plan (Love's Travel Stop).............................. 17
3.1. Site Generated Traffic ... 17
3.2. Trip Distribution ... 18
3.3. Site Traffic Assignment.. 18
3.4. Background Traffic Growth.. 18
3.5. Total Traffic Assignment.. 23
4. Five Year Development Plan (Full Build-Out)...................................... 24
4.1. Site Generated Traffic .. 24
4.2. Trip Distribution ... 25
4.3. Site Traffic Assignment... 26
4.4. Background Traffic Growth.. 26
4.5. Total Traffic Assignment.. 26
5. Warrant Analysis ... 30
5.1. Traffic Signal Warrants .. 30
6. Capacity Analysis... 31
6.1. Baseline... 31
6.2. One-way Stop Controlled Intersection... 32
6.3. Signalized Intersection ... 32
6.4. Roundabout Intersection .. 33
7. Findings 35
8. Conclusion and Recommendations 36
List of Figures
Figure Page Number
Figure 1: Location Map 9
Figure 2: Aerial Location Map 10
Figure 3: Proposed Roundabout Interchange 11
Figure 4: Existing Traffic Volumes with Existing Geometry 13
Figure 5: Existing Traffic Volumes with Proposed Geometry 14
Figure 6: Preliminary Site Plan for One (1) Year Development 15
Figure 7: Preliminary Site Plan for Five (5) Year Development 16
Figure 8: Directional Distribution for Site Generated Volumes 19
Figure 9: One (1) Year Development Plan Background Traffic 20
Figure 10: One (1) Year Development Plan Site Generated Traffic 21
Figure 11: One (1) Year Development Plan Total Traffic 22
Figure 12: Five (5) Year Development Plan Background Traffic 27
Figure 13: Five (5) Year Development Plan Site Generated Traffic 28
Figure 14: Five (5) Year Development Plan Total Traffic 29
List of Tables
Table Number and Title Page Number
Table 1: One (1) Year Development Plan Capacity Analysis 7
Table 2: Five (5) Year Development Plan Capacity Analysis 7
Table 3: One (1) Year Development Plan Trip Generation Rates 17
Table 4: One (1) Year Development Plan Site Traffic Generation 17
Table 5: One (1) Year Development Plan Directional Distribution 18
Table 6: Five (5) Year Development Plan Trip Generation Rates 24
Table 7: Five (5) Year Development Plan Site Traffic Generation 25
Table 8: Five (5) Year Development Plan Directional Distribution 26
Table 9: Baseline Capacity Analysis 31
Table 10: Roundabout Level of Service Criteria 31
Table 11: One Way Stop Controlled Capacity Analysis. 32
Table 12: TWSC Level of Service Criteria 32
Table 13: Signalized Intersection Capacity Analysis 33
Table 14: Signalized Level of Service Criteria 33
Table 15: Roundabout Capacity Analysis 34
Table 16: Roundabout Level of Service Criteria 34

List of Appendices

Appendix Title Page Number
Appendix A: Traffic Count Data 38
Appendix B: Traffic Control Warrant Analyses 41
Appendix C: Baseline Intersection Capacity Analyses 50
Appendix D: One (1) Year Development Capacity Analyses 53
Appendix E: Five (5) Year Development Capacity Analyses. 66

Preparer Qualifications

I certify that this TRAFFIC IMPACT STUDY has been prepared by me or under my immediate supervision and that I have experience and training in the field of traffic and transportation engineering.

George M. Ziegler, P.E.
Indiana Registration No. 10910736
Christopher B. Burke Engineering, LLC

1.0 Study Purpose and Executive Summary

1.1 Purpose of Report and Study Objectives

This Traffic Impact Study (TIS) is being submitted prior to the site plan approval request for driveway access to SR 28 and to construct improvements within the State's right-of-way including the driveway access point and recommended roadway improvements included in this report.

This TIS includes three study conditions:

- Baseline Study of the Existing Background Traffic
- Impacts from the Proposed One (1) Year Development Plan
- Impacts from the Proposed Five (5) Year Development Plan

The purpose of this Traffic Impact Study is to determine if the Proposed Development Plans can be accommodated within the current transportation infrastructure for the study conditions as outlined in this report. If the development cannot be accommodated within the current transportation infrastructure this report will determine the recommended improvements for operating conditions consistent with Indiana Department of Transportation (INDOT) policy.

The following report summarizes CBBEL's findings and conclusions of the traffic impact of the Proposed One (1) Year Development Plan as well as the future Five (5) Year Development Plan. Also included are recommendations for the design of the site and the surrounding roadway network.

1.2 Executive Summary

Site Location and Study Area

Christopher B. Burke Engineering, LLC (CBBEL) conducted a Traffic Impact Study (TIS) for the Proposed One (1) Year Development Plan and Proposed Five (5) Year Development Plan at the northwest quadrant of Indiana State Route 28 and US Route 31 in Tipton County, Indiana. The site is bounded by US Route 31 to the east, Indiana SR 28 to the south, and agricultural properties to the west and north. The existing land use at the site is agricultural with a single detached residential unit. The project location is illustrated in Figures 1 and 2.

Currently INDOT is designing a grade separated interchange to replace the existing signalized intersection of State Route 28 and US Route 31. The proposed geometry is a roundabout interchange and an illustration of the design provided by INDOT is shown in Figure 3.

The TIS Study will compare the baseline traffic conditions to the Proposed One (1) Year and Five (5) Year Development Plans. Site access is planned from Indiana SR 28 west of the proposed interchange with US Route 31.

Description for Proposed One (1) Year Development Plan

The One (1) Year Development Plan will consist of a Love's gas station and truck stop facility with attached convenience store, and fast food restaurant with drive through lane. The discussion on site generated traffic for this development is included in Section 3.0. The construction of the Love's Travel Stop facility is planned for 2016.

Description of Proposed Five (5) Year Development Plan

The Five (5) Year Development Plan will consist of approximately 31.63 acres of commercial land uses and represents the site's full build-out condition. The Five (5) Year Development Plan includes the Love's Travel Stop with the remainder of the parcel developed. It is anticipated the additional development will include fast food restaurants, discount retail stores, automobile sales, and an 80 room hotel. The construction start date for the Five (5) Year Development plan is to be determined.

Findings

CBBEL performed a capacity analyses for the intersection of the Site Access Drive and Indiana Route 28 and the proposed ramp roundabout using the One Way Stop Control, Signalized Intersection, and Roundabout alternatives for the subject site access point for the One (1) Year Development Plan and the Signalized Intersection and a Roundabout for the Five (5) Year Development Plan. Below are tables illustrating the results for the Site Access intersection. Additional capacity analysis discussion is included in Section 6.0.

CHRISTOPHER B. BURKE ENGINEERING, LLC

Table 1: One (1) Year Development Plan Capacity Analysis Site Access Drive and Indiana Route 28

		One (1) Year Development Plan			
	EB	WB	SB	Intersection	
One-Way Stop Controlled	AM	-	-	$12.0-\mathrm{B}$	$3.9-\mathrm{A}$
	PM	-	-	$12.8-\mathrm{B}$	$4.5-\mathrm{A}$
	AM	$4.3-\mathrm{A}$	$4.5-\mathrm{A}$	$18.6-\mathrm{B}$	$8.5-\mathrm{A}$
	PM	$4.6-\mathrm{A}$	$5.7-\mathrm{A}$	$17.5-\mathrm{B}$	$9.2-\mathrm{A}$
Roundabout	AM	$6.0-\mathrm{A}$	$5.5-\mathrm{A}$	$5.3-\mathrm{A}$	$5.6-\mathrm{A}$
	PM	$5.1-\mathrm{A}$	$6.8-\mathrm{A}$	$6.3-\mathrm{A}$	$6.4-\mathrm{A}$

Table 2: Five (5) Year Development Plan Capacity Analysis Site Access Drive and Indiana Route 28

		Five (5) Year Development Plan			
	EB	WB	SB	Intersection	
Signalized Intersection	AM	$9.3-\mathrm{A}$	$7.2-\mathrm{A}$	$18.5-\mathrm{B}$	$11.6-\mathrm{B}$
	PM	$12.3-\mathrm{B}$	$9.7-\mathrm{A}$	$16.8-\mathrm{B}$	$12.8-\mathrm{B}$
	AM	$10.0-\mathrm{A}$	$11.8-\mathrm{B}$	$9.8-\mathrm{A}$	$10.7-\mathrm{B}$
	PM	$9.7-\mathrm{A}$	$19.1-\mathrm{C}$	$18.8-\mathrm{C}$	$18.2-\mathrm{C}$

Conclusions and Recommendations

The One (1) Year Development volumes do not meet traffic signal warrants, but do meet INDOT design criteria (Figure 46-4A) for an auxiliary right turn lane on the east approach.

The Five (5) Year Development volumes do meet traffic signal warrants, but the roundabout alternative is recommended due to the adjacent interchange design.

A full discussion regarding the results of the study is included in Section 8.0.

2.0 Proposed Development and Area Conditions

2.1 Subject Site

The site is located on the northwest quadrant of US Route 31 and S.R. 28 in Tipton, Indiana. The project location is illustrated in Figures 1 and 2.

Area Land Uses

CBBEL conducted field reconnaissance in April 2015, of the roadway characteristics, traffic control, traffic patterns, and adjacent land uses. The existing conditions for the development site and surrounding facilities are described below.

The area north, south, and west of the site consists primarily of agricultural land uses, while restaurant and gas station and motel land uses are located at the existing intersection of State Route 28 and US Route 31. It was noted that most of the businesses are currently unoccupied; possibly due to the land acquisition process from the INDOT interchange project. Directly east of US Route 31 is a Chrysler Transmission Plant. Directly south of the project site across State Route 28 is a small cemetery with a gravel access drive.

Existing Transportation Network

The proposed site is adjacent to Indiana Route 28 and US Route 31. The existing characteristics of these roadways are described below.

Indiana Route 28 is an east-west two-lane classified as a rural Other Principal Arterial east of US 31 and as a Rural Minor Arterial west of US 31. The existing geometry has auxiliary left turn lanes for Indiana Route 28 at the signalized intersection with US 31. The posted speed limit in the vicinity of the site is currently 55 miles per hour. Indiana Route 28 is a marked State route under the jurisdiction of INDOT.

US Route 31 is a north-south divided four lane road classified as a Rural Other Principal Arterial with a 60 miles per hour posted speed limit. The existing geometry has auxiliary left and right turn lanes for US Route 31 at the signalized intersection with Indiana Route 28. US Route 31 is a marked US route under the jurisdiction of INDOT.

Proposed Transportation Network

INDOT is currently designing a roundabout interchange to replace the existing signalized intersection of US Route 31 and Indiana State Route 28. A schematic with INDOT's preliminary interchange design has been included in Figure 3.

Roadway Access
The proposed development will have an access point on Indiana Route 28, approximately 635 feet west of the US 31 southbound roundabout. CBBEL performed the capacity analyses for the intersection using the One Way Stop Control, Signalized Intersection, and Roundabout alternatives to evaluate the traffic operations at the site entrance. The capacity analyses are included in Section 6.0.

Zoning

The existing parcel for the planned development is zoned commercial.

Existing Volumes

Manual turning movement counts for the AM and PM peak periods were provided by INDOT for the existing intersection of US Route 31 and Indiana Route 28. The peak hour was recorded from 7am to 8am and 5pm to 6pm for Indiana Route 28. In addition, CBBEL gathered average daily traffic (ADT) volumes on March 26, 2015 for Indiana Route 28 both east and west of the US 31 intersection. CBBEL's data shows an ADT of 6,535 east of US 31 and an ADT of 3,001 west of US 31. ADT data on INDOT's website shows an ADT of 5,040 east of US 31 and an ADT of 2,853 west of US 31. The analysis ultimately used the volumes provided by INDOT to match the analysis used for the roundabout interchange.

Existing traffic volumes are shown in Figure 4 with redistributed volumes in Figure 5. The ADT traffic count data gathered by CBBEL is included in Appendix A.

2.2 Proposed Development

The project site was analyzed for three conditions: baseline study, One (1) Year Development and Five (5) Year Development. The One (1) Year Development plan consists of a Love's Travel Stop facility in the southeast corner of the parcel. The second condition is the future Five (5) Year Development plan, which consists of a full build-out of the parcel with forecasted land uses in addition to the Love's Travel Stop. The associated land uses and site generated traffic volumes for both conditions are included in Section 3.0.

The preliminary site plans for both conditions are illustrated in Figures 6 and 7.

3.0 One Year Development Plan (Love's Travel Stop)

The following section describes the estimated trip ends generated by the proposed Love's Travel Stop facility and the procedures used to develop those estimates.

The estimates of traffic to be generated by the site are based upon the proposed land use type and size. Traffic generation estimates for the proposed development are determined using rates and fitted curve equations published in the Institute of Transportation Engineers Trip Generation, $9^{\text {th }}$ Edition (ITE Report).

3.1 Site Generated Traffic

The rates and equations shown in Table 3 were used to estimate trips generated by the Love's site. They reflect typical trip ends based on the rates in the ITE Report. Table 4 summarizes the number of vehicles anticipated to be generated at the Love's site. These volumes are based on the generation rates and the size (dependent variable) of each proposed land use.

Table 3: One Year Development Plan Trip Generation Rates

Land Use [ITE Land Use Code]	Daily (trips/day/unit)	AM Peak (trips/hour/unit)	PM Peak (trips/hour/unit)
Fast-Food Restaurant with Drive- Through Window [934] (Trips/1000 s.f.)	$\mathrm{T}=496.12(\mathrm{X})$	$\mathrm{T}=45.42(\mathrm{X})$	$\mathrm{T}=32.65(\mathrm{X})$
Gasoline/Service Station with Convenience Market [945] (Trips/Fueling Stations)	$\mathrm{T}=162.78(\mathrm{X})$	$\mathrm{T}=10.16(\mathrm{X})$	$\mathrm{T}=13.51(\mathrm{X})$
Tire Store [848] (Trips/Service Bays)	No Equation Given	$\mathrm{T}=2.1(\mathrm{X})$	$\mathrm{T}=3.54(\mathrm{X})$

s.f. = Square feet
$X=$ Independent variable (i.e. 1000 s.f. of floor area)
T = Estimated trip ends; based on ITE Report Average Rate

Table 4: One Year Development Plan Site Traffic Generation

Building Number [ITE Land Use Code]	Size	Average Daily Trips	In			Out	Total	In
Fast Food Restaurant with Drive Through - [934]	2,800 s.f.	1,390	65	60	125	50	45	95
Gas Station with Convenience Store- [945]	26 fuel stations	4,230	130	130	260	175	175	350
Tire Store [848]	2 service bays		5	0	5	5	5	10
Total		5,620	200	190	$\mathbf{3 9 0}$	$\mathbf{2 3 0}$	$\mathbf{2 2 5}$	455

s.f. $=$ Square feet

Estimated trip ends for based on ITE Report Average Rates

It should be noted that this type of site, which includes a co-located gas station, convenience store, and fast-food restaurant, generally experiences a significant amount of internal capture trips, which would reduce the total number of trips added to the roadway network. However, CBBEL has conducted this analysis on the basis of the full trip generation estimates from the ITE Report, which reflects the traffic expected if all the customers of the gas station, tire store and restaurant arrived at the site independently. Passby trips and internal trips were not deducted from the volumes in an effort to present a more conservative analysis.

3.2 Trip Distribution

The direction of vehicles traveling around the development site is influenced by several factors, such as site access locations, land uses, congestion, nearby traffic generators, the area road network, and travel patterns of existing traffic. This distribution was estimated based on existing traffic patterns and the proximity of US Route 31. The estimated directional distribution for the Love's site is shown in Table 5 and Figure 8.

Table 5: Directional Distribution

Roadway Segment	Percent of Site Generated Traffic
Indiana Route 28 East	20%
Indiana Route 28 West	10%
US Route 31 North	35%
US Route 31 South	35%
Total	$\mathbf{1 0 0 \%}$

3.3 Site Traffic Assignment

The site traffic assignment for the Love's development is based on the application of the directional distribution estimates (Table 5) to the site generated traffic volumes (Table 4). The site traffic assignment for the weekday morning and evening peak hours is shown in Figure 10.

3.4 Background Traffic Growth

CBBEL utilized background traffic volume growth rates provided by INDOT for traffic volumes on Indiana Route 28. Based on the data provided, CBBEL

has estimated a background factor of 0.25% annual growth, which is representative of the growth expected in the region.

3.5 Total Traffic Assignment

The estimated site traffic volumes for the Love's development (Figure 10) were combined with the existing weekday peak hour traffic volumes (Figure 9) and the background growth traffic volumes to determine the total traffic assignment for each of the design horizons. The total traffic assignment volumes for the weekday morning and evening peak hours adjacent for Year of Construction are shown in Figure 11.

4.0 Five (5) Year Development Plan (Full Build-Out)

The following section describes the estimated trip ends generated by the proposed Five (5) Year Development plan and the procedures used to develop those estimates for the full build-out condition.

The estimates of traffic to be generated by the site are based upon the proposed land use type and size as shown in Figure 7. Traffic generation estimates for the proposed Five (5) Year development are determined using rates and fitted curve equations published in the ITE Report.

4.1 Site Generated Traffic

The rates and equations shown in Table 6 were used to estimate trips generated by the Five (5) Year Development plan. They reflect typical trip ends based on the rates in the ITE Report. Table 7 summarizes the number of vehicles anticipated to be generated at the site during full build-out condition. These volumes are based on the generation rates and the size (dependent variable) of each proposed land use.

Table 6: Trip Generation Rates

$\begin{gathered} \text { Land Use } \\ \text { [ITE Land Use Code] } \\ \hline \end{gathered}$	Daily (trips/day/unit)	AM Peak (trips/hour/unit)	PM Peak (trips/hour/unit)
Fast-Food Restaurant with DriveThrough Window [934] (Trips/1000 s.f.)	T = 496.12(X)	$\mathrm{T}=45.42$ (X)	T = 32.65(X)
Gasoline/Service Station with Convenience Market [945] (Trips/Fueling Stations)	T = 162.78(X)	$\mathrm{T}=10.16$ (X$)$	T = 13.51(X)
Tire Store [848] (Trips/Service Bays)	No Equation Given	$\mathrm{T}=2.1(\mathrm{X})$	$\mathrm{T}=3.54(\mathrm{X})$
Hotel [310] (Trips/Rooms)	$\begin{gathered} \mathrm{T}=8.95(\mathrm{X})- \\ 373.16 \end{gathered}$	$\mathrm{T}=0.53$ (X)	$\mathrm{T}=0.60$ (X)
Free-Standing Discount Store [815] (Trips/1000 s.f.)	T = 57.24 (X)	$\mathrm{T}=1.06$ (X)	$\mathrm{T}=4.98$ (X)
Automobile Sales [841] (Trips/1000 s.f.)	$\mathrm{T}=32.3$ (X)	$\mathrm{T}=1.92$ (X)	$\begin{gathered} \mathrm{T}=1.91(\mathrm{X})+ \\ 23.74 \end{gathered}$
s.f. = Square feet X = Independent variable (i.e. 1000 s.f. of floor area) T = Estimated trip ends; based on ITE Report Averag			

Table 7: Love's Site with Five (5) Year Development Traffic Generation

	Building Number[ITE Land Use Code]	Size	Average Daily Trips	AM			PM		
				In	Out	Total	In	Out	Total
$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Fast Food Restaurant with Drive Through - [934]	2,800 s.f.	1,390	65	60	125	50	45	95
	Gas Station with Convenience Store- [945]	26 fuel stations	4,230	130	130	260	175	175	350
	Tire Store [848]	$\begin{gathered} 2 \text { service } \\ \text { bays } \\ \hline \end{gathered}$		5	0	5	5	5	10
	Hotel - [310]	80 rooms	340	15	25	40	25	25	50
	Fast Food Restaurant with Drive Through - [934]	4,000 s.f.	1,980	95	90	185	70	65	135
	Fast Food Restaurant with Drive Through - [934]	4,000 s.f.	1,980	95	90	185	70	65	135
	Fast Food Restaurant with Drive Through - [934]	4,000 s.f.	1,980	95	90	185	70	65	135
	Free-Standing Discount Store - [815]	$\begin{gathered} \hline 35,000 \\ \text { s.f. } \end{gathered}$	2,000	25	10	35	85	85	170
	Automobile Sales - [841]	$\begin{gathered} 30,000 \\ \text { s.f. } \end{gathered}$	970	45	15	60	30	50	80
	Free-Standing Discount Store - [815]	$\begin{gathered} 43,000 \\ \text { s.f. } \end{gathered}$	2,460	30	15	45	105	105	210
	Total		17,330	610	515	1,125	685	685	1,370

It should be noted that this type of multi-use development site, which includes a gas station, convenience store, fast-food restaurants, hotel, automobile sales, and discount retail stores, generally experiences a significant amount of internal capture trips, which would reduce the total number of trips added to the roadway network. Similar to the One (1) Year Development plan, CBBEL has conducted this analysis on the basis of the full trip generation estimates from the ITE Report, which reflects the traffic expected if all the customers for each land use arrived at the site independently. By not deducting passer-by trips and internal trips, this will result in a more conservative analysis.

4.2 Trip Distribution

The same percent distribution of vehicles for the One (1) Year Development plan was applied to the Five (5) Year Development plan, which considers the site access location, land uses, congestion, nearby traffic generators, the area road network, and travel patterns of existing traffic. The estimated directional distribution for both the One (1) Year and Five (5) Year Development plans are shown in Table 8 and Figure 8.

Table 8: Directional Distribution

Roadway Segment	Percent of Site Generated Traffic
Indiana Route 28 East	20%
Indiana Route 28 West	10%
US Route 31 North	35%
US Route 31 South	35%
Total	$\mathbf{1 0 0 \%}$

4.3 Site Traffic Assignment

The site traffic assignment for both the One (1) Year and Five (5) Year Development plans is based on the application of the directional distribution estimates (Table 8) to the site generated traffic volumes (Table 7). The site traffic assignment for the weekday morning and evening peak hours is shown in Figure 13.

4.4 Background Traffic Growth

CBBEL utilized background traffic volume growth rates provided by INDOT for traffic volumes on Indiana Route 28. Based on the data provided, CBBEL has estimated a background factor of 0.25% annual growth, which is representative of the growth expected in the region. The five year background traffic volumes are shown in Figure 12.

4.5 Total Traffic Assignment

The estimated site traffic volumes for the Love's site and Five Year Development plan (Figure 13) were combined with the background weekday peak hour traffic volumes (Figure 12) and the background growth traffic volumes to determine the total traffic assignment for the Five Year Design Horizon. The total traffic assignment volumes for the weekday morning and evening peak hours adjacent for the Five Year Horizon are shown in Figure 14.

5.0 Warrant Analysis

CBBEL conducted a warrant analysis for traffic signals to confirm whether additional traffic control measures are necessary at the intersection of the site access drive and Indiana Route 28. The warrant analysis was conducted according to the procedures established in the Indiana Manual on Uniform Traffic Control Devices 2011 Edition (IMUTCD). The Warrant Analyses were conducted using TEAPAC software [Version 8.61-21] and the full output is included in the Appendix of this report.

5.1 Traffic Signal Warrants

The results of the Warrant Analyses indicate that the estimated traffic volumes in the One (1) Year Development plan will not satisfy traffic signal warrants, but the warrants will be met for the Five (5) Year Development plan at the intersection of the site access drive and Indiana Route 28. The Five (5) Year Development volumes met the following IMUTCD Warrants: Warrant 1, Eight-Hour Vehicular Volume; Warrant 2, Four-Hour Vehicular Volume; and Warrant 3, Peak Hour. Based on the volume projections, capacity analyses, and the warrant analysis, a traffic control improvement should be considered at the intersection.

6.0 Capacity Analysis

Capacity analyses were performed for the proposed site entrance and the west (southbound) ramp roundabout proposed by INDOT along Indiana Route 28 to estimate the intersection performance under the projected traffic conditions. The capacity analyses were conducted using the Synchro (Version 8) software package from Trafficware and use the Highway Capacity Manual 2010 edition equations.

The analyses generate a level-of-service (LOS) result for each movement or lane group. LOS describes the performance of the intersection and is determined based on delay (seconds per vehicle). LOS, which is a qualitative measure of intersection operation, ranges from LOS " A " to LOS " F," with LOS " A " being the best performance level for an intersection.

6.1 Baseline Capacity Analysis

The baseline condition analyzes the background traffic volumes within our study area for comparison with the capacity results of the One (1) Year and Five (5) Year Development plans. The geometry used for the baseline analysis was the INDOT proposed west (southbound) ramp roundabout. The results of the baseline condition analysis are summarized in Table 9.

Table 9: Baseline Capacity Analysis Approach Delay (LOS)

Intersection	Control	Approach	Weekday Peak Hour	
			AM Peak Hour	PM Peak Hour
State Route 28 / US Route 31 SB Ramp	Roundabout	North	$\mathrm{A}-7.0$	$\mathrm{~A}-6.8$
		East	$\mathrm{A}-5.0$	$\mathrm{~A}-5.2$
	West	$\mathrm{A}-7.2$	$\mathrm{~A}-5.1$	
		Overall	$\mathrm{A}-6.5$	$\mathrm{~A}-6.0$

Table 10: Roundabout Level of Service Criteria (2010 HCM)

Control Delay per Vehicle (s)	LOS by Volume to Capacity Ratio	
	≤ 1	>1
≤ 10	A	F
>10 and ≤ 15	B	F
>15 and ≤ 25	C	F
>25 and ≤ 35	D	F
>35 and ≤ 50	E	F
>50	F	F

6.2 One Way Stop Control

The stop control analysis for the One (1) Year Development design horizon was conducted using the proposed roundabout interchange geometry and a two way stop controlled intersection at the site access drive on Indiana Route 28. The geometry at the site access drive used in the analysis consisted of a dedicated southbound left-turn lane and right-turn lane and auxiliary turn lanes on both the eastbound and westbound approaches on Indiana Route 28. The results of the stop controlled analyses for the One Year Development plan (Love's Site) condition are summarized in Table 11.

Table 11: One Way Strop Control Intersection Capacity Analysis One (1) Year Design Horizon Approach Delay (LOS)

Intersection	Control	Approach	One Year Development Weekday Peak Hour	
			AM Peak Hour	PM Peak Hour
	Roundabout		$\mathrm{A}-9.6$	$\mathrm{~A}-9.8$
		North	$\mathrm{A}-6.8$	$\mathrm{~A}-7.3$
		East	$\mathrm{B}-10.9$	$\mathrm{~A}-8.2$
State Route 28 / Site Access	TWSC	Overall	$\mathrm{A}-9.2$	$\mathrm{~A}-\mathbf{8 . 5}$
		North	$\mathrm{B}-12.0$	$\mathrm{~B}-12.8$
		Overall	$\mathrm{A}-3.9$	$\mathrm{~A}-4.5$

Table 12: TWSC Level of Service Criteria (2010 HCM)

Control Delay per Vehicle (s)	LOS by Volume to Capacity Ratio	
	≤ 1	>1
≤ 10	A	F
>10 and ≤ 15	B	F
>15 and ≤ 25	C	F
>25 and ≤ 35	D	F
>35 and ≤ 50	E	F
>50	F	F

6.3 Signalized Capacity Analyses

The signalized analyses for the One (1) Year Development and the Five (5) Year Development design horizons were conducted based on the proposed roundabout interchange geometry and a signalized intersection at the site access drive on Indiana Route 28. The geometry at the site access drive used in the analyses consisted of a dedicated southbound left-turn lane and right-turn lane and auxiliary turn lanes on both the eastbound and westbound approaches on Indiana Route 28. The results of the signalized analyses for the One (1) Year Development and Five (5) Year Development conditions are summarized in Table 13.

Table 13: Signalized Intersection Capacity Analysis One (1) and Five (5) Year Design Horizons Approach Delay (LOS)

Intersection	Control	Approach	One Year Development Weekday Peak Hour		Five Year Development Weekday Peak Hour	
			AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
State Route 28 / US Route 31 SB Ramp	Roundabout	North	A - 9.6	A-9.8	D-27.3	D-33.9
		East	A-6.8	A-7.3	B - 13.4	C - 19.1
		West	B-10.9	A-8.2	D-31.9	D - 28.6
		Overall	A - 9.2	A-8.5	C-24.8	D - 27.0
State Route 28 / Site Access	Signalized	North	B-18.6	B-17.5	B-18.5	B - 16.8
		East	A-4.5	A-5.7	A-7.2	A-9.7
		West	A-4.3	A-4.6	A-9.3	B-12.3
		Overall	A - 8.5	A-9.2	B - 11.6	B-12.8

Table 14: Signalized Intersection Level of Service Criteria (2010 HCM)

Control Delay per Vehicle (s)	LOS by Volume to Capacity Ratio	
	≤ 1	>1
≤ 10	A	F
>10 and ≤ 20	B	F
>20 and ≤ 35	C	F
>35 and ≤ 55	D	F
>55 and ≤ 80	E	F
>80	F	F

6.4 Roundabout Capacity Analyses

The roundabout analyses for the One (1) Year Development and the Five (5) Year Development design horizons were conducted based on the proposed roundabout interchange geometry and an additional roundabout located at the site access drive on Indiana Route 28. The geometry used for the analysis was a single lane roundabout. The results of the roundabout analyses for the One (1) Year Development and Five (5) Year Development conditions are summarized in Table 15.

Table 15: Roundabout Capacity Analysis One (1) and Five (5) Year Design Horizons Approach Delay (LOS)

Intersection	Control	Approach	One Year Development Weekday Peak Hour		Five Year Development Weekday Peak Hour	
			AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
State Route 28 / US Route 31 SB Ramp	Roundabout	North	A - 9.6	A-9.8	D-27.3	D-33.9
		East	A-6.8	A-7.3	B-13.4	C - 19.1
		West	B-10.9	A-8.2	D-31.9	D-28.6
		Overall	A - 9.2	A - 8.5	C-24.8	D-27.0
State Route 28 / Site Access	Roundabout	North	A - 5.3	A-6.3	A -9.8	C-18.8
		East	A-5.5	A-6.8	B - 11.8	C-19.1
		West	A-6.0	A-5.1	A-10.0	A-9.7
		Overall	A - 5.6	A-6.4	B-10.7	C-18.2

Table 16: Roundabout Level of Service Criteria (2010 HCM)

Control Delay per Vehicle (s)	LOS by Volume to Capacity Ratio	
	≤ 1	>1
≤ 10	A	F
>10 and ≤ 15	B	F
>15 and ≤ 25	C	F
>25 and ≤ 35	D	F
>35 and ≤ 50	E	F
>50	F	F

7.0 Findings

The following is a summary of the capacity analysis results for the One (1) Year (Love's site) and Five (5) Year Development (full build-out) conditions.

One (1) Year Development Plan

The traffic generated from the One (1) Year Development condition maybe managed with a One Way Stop Control, Signalized Control or Roundabout. The One Way Stop Control alternative resulted in the lowest delay per vehicle for the proposed site access drive intersection at the 1 year design horizon.

The One (1) Year Development right turn volume does meet the threshold value for an auxiliary right turn lane on the east approach of Indiana Route 28, according to the INDOT Design Manual Chapter 46 using the unsignalized intersection guidance (Figure 46-4A).

Five (5) Year Development Plan

The traffic generated from the Five (5) Year Development condition maybe managed with Signalized Control or a Roundabout. The Signalized Control and Roundabout conditions yielded similar vehicle delay for both peak periods.

The capacity analyses indicate that the existing west (southbound) ramp roundabout intersection will operate at acceptable levels-of-service with the projected traffic for the One (1) Year Development (Love's site). The capacity analyses for the Five (5) Year Development plan do show an increase in delay, but operate below capacity.

8.0 Conclusions and Recommendations

The planned facilities at the project site are expected to result in traffic volumes that will require improvements to the intersection of Indiana Route 28 at the proposed site access drive.

Conclusions

For the Five (5) Year Development plan, a roundabout alternative is recommended because of the proximity of the adjacent roundabout interchange and to meet driver expectation.

One (1) Year Development Plan Recommended Improvements

The recommended roadway improvements for the One (1) Year Development plan consist of the following:

- Installation of One Way Stop Control for the site access drive
- Installation of an auxiliary right turn lane for the east approach of Indiana Route 28
- Monitor traffic volumes as the site develops to evaluate the need for a traffic signal in the future as an interim improvement.

Five (5) Year Development Plan Recommended Improvements

The recommended roadway improvements for the Five (5) Year Development plan consist of the following:

- Installation of a Roundabout at the site access drive

LJ
N:IINDIANAl140337.00002ITISITIS-Draft.docx

CB CHRISTOPHER B. BURKE ENGINEERING, lLC

Appendix

Traffic Count Data

Page 1
Tipton, Indiana
IN 28
East of US 31

Fish Transportation Group
801 South Blvd, Suite 5
Oak Park, IL 60302
Date Start: 26-Mar-15
Date End: 26-Mar-15

Page 1
Tipton, Indiana IN 28
West of US 31

Fish Transportation Group
801 South Blvd, Suite 5
Oak Park, IL 60302
Date Start: 26-Mar-15 Date End: 26-Mar-15

Traffic Control Warrant Analyses

Traffic Signal Analysis

Loves Travel Stops Tipton Development	$04 / 28 / 15$
2016 Love's Site Interim	$15: 16: 31$
nalysis2016Loves.tpc	

TEAPAC[Ver 8.62.01] - MUTCD Warrant Analysis

Conditions Used for Warrant Analysis	2011 IMUTCD
Intersection \# 1	
Major Street Direction	EastWest
Number of Lanes in North-South direction	2
Number of Lanes in East-West direction	2
Approach speed on major street is greater than 40 mph	No
Isolated community has population less than 10,000	Yes
Signal will not seriously disrupt progressive traffic flow	Yes
Trials of other remedies have failed to improve conditions	Yes
Number of accidents correctable by a signal	0
Peak hour stop sign delay for worst minor approach (veh-hours)	1
Number of accidents correctable by a multi-way stop	0
Peak hour average delay for all minor approaches (sec/veh)	10

TEAPAC[Ver 8.62.01] - Warrant Analysis for Traffic Signal

Warrant 1A Analysis - 8-Hour Minimum Vehicular Volume

Start Time	1600	1700	700	1500	1400	1800	1200	800	Req.
Minor Volume	225	225	190	190	170	160	150	135	150
Major Volume	450	450	425	385	345	320	360	275	500
Warrant Met?	No	8							
Number of 1-hour periods meeting the warrant 0									
Signal will not seriously disrupt progressive traffic flow Yes									

Warrant 1B Analysis - 8-Hour Interruption of Continuous Traffic

Start Time	1600	1700	700	1500	1400	1800	1200	800	Req.
Minor Volume	225	225	190	190	170	160	150	135	75
Major Volume	450	450	425	385	345	320	360	275	750
Warrant Met?	No	8							

Number of 1-hour periods meeting the warrant	0
Signal will not seriously disrupt progressive traffic flow	

Loves Travel Stops Tipton Development	$04 / 28 / 15$
2016 Love's Site Interim	$15: 16: 31$
nalysis2016Loves.tpc	

TEAPAC[Ver 8.62.01] - Warrant Analysis for Traffic Signal

Start Time	1600	1700	700	1500	1400	1200	1800	800	Req.
Minor Volume	225	225	190	190	170	150	160	135	120
Major Volume	450	450	425	385	345	360	320	275	400
Warrant Met?	Yes	Yes	Yes	No	No	No	No	No	8

Number of 1 -hour periods meeting the warrant (56% allowed) 3

Warrant 1B Analysis (80\%)-8-Hour Interruption of Continuous Traf

Start Time	1600	1700	700	1500	1400	1800	1200	800	Req.
Minor Volume	225	225	190	190	170	160	150	135	60
Major Volume	450	450	425	385	345	320	360	275	600
Warrant Met?	No	8							

Number of 1-hour periods meeting the warrant (56% allowed) 0

Warrant 1C Analysis - 8-Hour Combination of Warrants

80% of Warrants 1 A and 1 B are met (56\% allowed)	No
Signal will not seriously disrupt progressive traffic flow	Yes
Trials of other remedies have failed to reduce delays	Yes

>> WARRANT 1C IS NOT MET <<
Warrant 2 Analysis - 4-Hour Vehicular Volume

Start Time	1600	1700	700	1500	1400	1800	1200	800	Req.
Minor Volume	225	225	190	190	170	160	150	135	
Minor Reqrmt	285	285	297	317	338	352	330	376	<--
Warrant Met?	No	4							

Number of 1-hour periods meeting the warrant 0
Signal will not seriously disrupt progressive traffic flow Yes

TEAPAC[Ver 8.62.01] - Warrant Analysis for Traffic Signal

Warrant 3A Analysis - Peak Hour Delay
Start Time

$\overline{\ggg \text { WARRANT 3A IS NOT MET } \ll}$

Warrant 3B Analysis - Peak Hour Volume

Start Time	1600	1700	700	1500	1400	1800	1200	800	Req.
Minor Volume	225	225	190	190	170	160	150	135	
Minor Reqrmt	450	450	464	487	511	526	502	554	<--
Warrant Met?	No	1							

Number of 1-hour periods meeting the warrant 0
Signal will not seriously disrupt progressive traffic flow Yes
>> WARRANT 3B IS NOT MET \ll

Summary of MUTCD Traffic Signal Warrant Analysis

Warrant 1A 8-Hour Minimum Vehicular Volume	NOT MET
Warrant 1B 8-Hour Interruption of Continuous Traffic	NOT MET
Warrant 1C 8-Hour Combination of Warrants	NOT MET
Warrant 24-Hour Vehicular Volume	NOT MET
Warrant 3A Peak Hour Delay	NOT MET
Warrant 3B Peak Hour Volume	NOT MET

>> Traffic Signal Warrant is NOT MET <<

TEAPAC[Ver 8.62.01] - 60-Minute Volumes: by Movement
Int\# 1

Begin Time	N-Approach			E-Approach			S-Approach			W-Approach			$\begin{aligned} & \text { Int } \\ & \text { Total } \end{aligned}$
	RT	TH	LT										
600	10	0	115	115	35	0	0	0	0	0	90	15	380*
700	20	0	170	180	60	0	0	0	0	0	165	20	615*
800	10	0	125	125	35	0	0	0	0	0	100	15	410*
900	10	0	110	110	35	0	0	0	0	0	90	15	370*
1000	10	0	125	125	35	0	0	0	0	0	100	15	410*
1100	10	0	100	100	75	0	0	0	0	0	80	10	375*
1200	15	0	135	135	100	0	0	0	0	0	110	15	510*
1300	10	0	125	125	90	0	0	0	0	0	45	15	410*
1400	15	0	155	155	115	0	0	0	0	0	55	20	515*
1500	15	0	175	175	130	0	0	0	0	0	60	20	575*
1600	20	0	205	205	150	0	0	0	0	0	70	25	675*
1700	20	0	205	205	150	0	0	0	0	0	70	25	675*
1800	15	0	145	145	105	0	0	0	0	0	50	20	480*

TEAPAC[Ver 8.62.01]-60-Minute Volumes: Appr/ Exit Totals
Int\# 1

Begin Time	Approach Totals				Exit Totals				Int
	N	E	S	W	N	E	S	W	Total
600	125	150	0	105	130	205	0	45	380*
700	190	240	0	185	200	335	0	80	615*
800	135	160	0	115	140	225	0	45	410*
900	120	145	0	105	125	200	0	45	370*
1000	135	160	0	115	140	225	0	45	410*
1100	110	175	0	90	110	180	0	85	375*
1200	150	235	0	125	150	245	0	115	510*
1300	135	215	0	60	140	170	0	100	410*
1400	170	270	0	75	175	210	0	130	515*
1500	190	305	0	80	195	235	0	145	575*
1600	225	355	0	95	230	275	0	170	675*
1700	225	355	0	95	230	275	0	170	675*
1800	160	250	0	70	165	195	0	120	480*

TEAPAC[Ver 8.62.01] - MUTCD Warrant Analysis

Conditions Used for Warrant Analysis	2011 IMUTCD
Intersection \# 1	
Major Street Direction	EastWest
Number of Lanes in North-South direction	2
Number of Lanes in East-West direction	2
Approach speed on major street is greater than 40 mph	No
Isolated community has population less than 10,000	Yes
Signal will not seriously disrupt progressive traffic flow	Yes
Trials of other remedies have failed to improve conditions	Yes
Number of accidents correctable by a signal	0
Peak hour stop sign delay for worst minor approach (veh-hours)	13
Number of accidents correctable by a multi-way stop	0
Peak hour average delay for all minor approaches (sec/veh)	68

TEAPAC[Ver 8.62.01] - Warrant Analysis for Traffic Signal

Warrant 1A Analysis - 8-Hour Minimum Vehicular Volume

Start Time	1700	1600	1500	1400	700	1800	1200	1000	Req.
Minor Volume	685	680	590	520	515	485	455	425	150
Major Volume	910	905	785	695	830	645	665	560	500
Warrant Met?	Yes	8							
Number of 1-hour periods meeting the warrant									12
Signal will not seriously disrupt progressive traffic flow									Yes

>> WARRANT 1A IS MET <<
Warrant 1B Analysis - 8-Hour Interruption of Continuous Traffic

Start Time	1700	1600	1500	1400	700	1800	1200	1000	Req.
Minor Volume	685	680	590	520	515	485	455	425	75
Major Volume	910	905	785	695	830	645	665	560	750
Warrant Met?	Yes	Yes	Yes	No	Yes	No	No	No	8
Number of 1-hour periods meeting the warrant									4
Signal will not seriously disrupt progressive traffic flow									Yes

TEAPAC[Ver 8.62.01] - Warrant Analysis for Traffic Signal

Start Time	1700	1600	1500	1400	700	1800	1200	1000	Req.
Minor Volume	685	680	590	520	515	485	455	425	120
Major Volume	910	905	785	695	830	645	665	560	400
Warrant Met?	Yes	8							

Number of 1-hour periods meeting the warrant (56% allowed) 13

Warrant 1B Analysis (80\%) - 8-Hour Interruption of Continuous Traf

Start Time	1700	1600	1500	1400	700	1800	1200	1000	Req.
Minor Volume	685	680	590	520	515	485	455	425	60
Major Volume	910	905	785	695	830	645	665	560	600
Warrant Met?	Yes	No	8						

Number of 1-hour periods meeting the warrant (56% allowed) 7

Warrant 1C Analysis - 8-Hour Combination of Warrants

80% of Warrants 1 A and 1 B are met (56% allowed)	No
Signal will not seriously disrupt progressive traffic flow	Yes
Trials of other remedies have failed to reduce delays	Yes

>> WARRANT 1C IS NOT MET \ll
Warrant 2 Analysis - 4-Hour Vehicular Volume

Start Time	1700	1600	1500	1400	700	1800	1200	1000	Req.
Minor Volume	685	680	590	520	515	485	455	425	
Minor Reqrmt	117	119	153	183	139	201	194	236	<--
Warrant Met?	Yes	4							
Number of 1-hour periods meeting the warrant									13
Signal will not seriously disrupt progressive traffic flow									Yes

TEAPAC[Ver 8.62.01] - Warrant Analysis for Traffic Signal

Warrant 3A Analysis - Peak Hour Delay									
Start Time	1700	1600	1500	1400	700	1800	1200	1000	Req.
Minor Volume	685	680	590	520	515	485	455	425	150
Total Volume	1595	1585	1375	1215	1345	1130	1120	985	650
Warrant Met?	Yes	1							

Number of 1-hour periods meeting the warrant 13
Signal will not seriously disrupt progressive traffic flow Yes
Delay for worst minor approach (must be at least 5 veh-hours) 13
$\overline{\gg \text { WARRANT 3A IS MET } \ll}$
Warrant 3B Analysis - Peak Hour Volume

Start Time	1700	1600	1500	1400	700	1800	1200	1000	Req.
Minor Volume	685	680	590	520	515	485	455	425	
Minor Reqrmt	238	240	287	326	269	349	340	391	--
Warrant Met?	Yes	1							

Number of 1-hour periods meeting the warrant 11
Signal will not seriously disrupt progressive traffic flow Yes
>> WARRANT 3B IS MET \ll

Summary of MUTCD Traffic Signal Warrant Analysis

Warrant 1A 8-Hour Minimum Vehicular Volume	MET
Warrant 1B 8-Hour Interruption of Continuous Traffic	NOT MET
Warrant 1C 8-Hour Combination of Warrant	NOT MET
Warrant 24-Hour Vehicular Volume	MET
Warrant 3A Peak Hour Delay	MET
Warrant 3B Peak Hour Volume	MET

>> Traffic Signal Warrant is MET <<

TEAPAC[Ver 8.62.01]-60-Minute Volumes: by Movement
Int\# 1

Begin Time	N -Approach			E-Approach			S-Approach			W-Approach			$\begin{array}{r} \text { Int } \\ \text { Total } \end{array}$
	RT	TH	LT										
600	40	0	345	345	35	0	0	0	0	0	90	40	895*
700	50	0	465	545	60	0	0	0	0	0	165	60	1345*
800	40	0	370	375	35	0	0	0	0	0	100	40	960*
900	40	0	335	340	35	0	0	0	0	0	90	40	880*
1000	45	0	380	380	35	0	0	0	0	0	100	45	985*
1100	35	0	300	305	75	0	0	0	0	0	80	35	830*
1200	45	0	410	410	100	0	0	0	0	0	110	45	1120*
1300	45	0	380	380	90	0	0	0	0	0	45	45	985*
1400	55	0	465	470	115	0	0	0	0	0	55	55	1215*
1500	60	0	530	535	130	0	0	0	0	0	60	60	1375*
1600	70	0	610	615	150	0	0	0	0	0	70	70	1585*
1700	70	0	615	620	150	0	0	0	0	0	70	70	1595*
1800	50	0	435	440	105	0	0	0	0	0	50	50	1130*

TEAPAC[Ver 8.62.01]-60-Minute Volumes: Appr/Exit Totals
Int\# 1

Begin Time	Approach Totals				Exit Totals				Int
	N	E	S	W	N	E	S	W	Total
600	385	380	0	130	385	435	0	75	895*
700	515	605	0	225	605	630	0	110	1345*
800	410	410	0	140	415	470	0	75	960*
900	375	375	0	130	380	425	0	75	880*
1000	425	415	0	145	425	480	0	80	985*
1100	335	380	0	115	340	380	0	110	830*
1200	455	510	0	155	455	520	0	145	1120*
1300	425	470	0	90	425	425	0	135	985*
1400	520	585	0	110	525	520	0	170	1215*
1500	590	665	0	120	595	590	0	190	1375*
1600	680	765	0	140	685	680	0	220	1585*
1700	685	770	0	140	690	685	0	220	1595*
1800	485	545	0	100	490	485	0	155	1130*

Baseline Intersection Capacity Analyses

Roundabout

8: State Route 28 \& US Route 31 SB Ramp

One (1) Year Development Capacity Results

Two Way Stop Control Signalized Intersection

Roundabout

8: State Route 28 \& US Route 31 SB Ramp

11: Cemetery Driveway/Loves Truck Stop \& State Route 28

Intersection												
Int Delay, s/veh	3.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	20	165	0	0	60	180	0	0	0	170	0	20
Conflicting Peds, \#hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-		None
Storage Length	185	-	-			185	-	-	-	0		0
Veh in Median Storage, \#	-	0			0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	174	0	0	63	189	0	0	0	179	0	21
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	63	0	0	174	0	0	279	279	174	279	279	63
Stage 1	-	-	-		-		216	216		63	63	
Stage 2	-	-		-			63	63	-	216	216	
Critical Hdwy	4.12	-	-	4.12			7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-		6.12	5.52	-	6.12	5.52	
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	
Follow-up Hdwy	2.218			2.218		-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1540	-	-	1403	-		673	629	869	673	629	1002
Stage 1	-	-	-	-	-	-	786	724		948	842	
Stage 2	-	-	-	-	-		948	842	-	786	724	
Platoon blocked, \%		-	-		-	-						
Mov Cap-1 Maneuver	1540	-	-	1403	-	-	652	620	869	666	620	1002
Mov Cap-2 Maneuver	-	-	-	-	-	-	652	620	-	666	620	
Stage 1	-	-		-	-		775	714		935	842	
Stage 2			-	-	-	-	928	842	-	775	714	

Approach	EB	WB	NB	SB
HCM Control Delay, S	0.8	0	0	12
HCM LOS		A	B	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	-1540	-	-1403	-	-666	1002		
HCM Lane V/C Ratio	-0.014	-	-	-	-	-0.269	0.021	
HCM Control Delay (s)	0	7.4	-	-	0	-	-12.4	8.7
HCM Lane LOS	A	A	-	-	A	-	-	B
A	A							
HCM 95th \%tile Q(veh)	-	0	-	-	0	-	-	1.1
0.1								

8: State Route 28 \& US Route 31 SB Ramp

Intersection												
Int Delay, s/veh	4.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	25	70	0	0	150	205	0	0	0	205	0	20
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	185				-	185				0		0
Veh in Median Storage, \#	-	0	-	-	0		-	0	-	-	0	
Grade, \%	-	0	-		0		-	0			0	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	26	74	0	0	158	216	0	0	0	216	0	21
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	158	0	0	74	0	0	284	284	74	284	284	158
Stage 1	-	-	-		-		126	126	-	158	158	
Stage 2	-	-	-	-	-		158	158	-	126	126	
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-		6.12	5.52		6.12	5.52	
Critical Hdwy Stg 2	-		-		-		6.12	5.52	-	6.12	5.52	
Follow-up Hdwy	2.218			2.218	-		3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1422	-	-	1526	-		668	625	988	668	625	887
Stage 1	-	-	-	-	-		878	792		844	767	
Stage 2	-	-	-	-	-	-	844	767	-	878	792	
Platoon blocked, \%			-		-							
Mov Cap-1 Maneuver	1422	-	-	1526	-		643	614	988	659	614	887
Mov Cap-2 Maneuver	-		-	-	-		643	614		659	614	
Stage 1		-	-	-	-		862	778		829	767	
Stage 2	-	-	-	-	-	-	824	767	-	862	778	

Approach	EB	WB	NB	SB
HCM Control Delay, S	2	0	0	12.8
HCM LOS		A	B	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	-1422	-	-1526	-	-659	887		
HCM Lane V/C Ratio	-0.019	-	-	-	-	-0.327	0.024	
HCM Control Delay (s)	0	7.6	-	-	0	-	-13.1	9.2
HCM Lane LOS	A	A	-	-	A	-	-	B
A	A							
HCM 95th \%tile Q(veh)	-	0.1	-	-	0	-	-	1.4

8: State Route 28 \& US Route 31 SB Ramp

	7			7			4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	$\hat{\square}$			\uparrow	「		\$		${ }^{4}$		「
Volume (veh/h)	20	165	0	0	60	180	0	0	0	170	0	20
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $\mathrm{Q}(\mathrm{Qb})$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1900	1863	1863	1900	1863	1900	1863	0	1863
Adj Flow Rate, veh/h	21	174	0	0	63	189	0	0	0	179	0	21
Adj No. of Lanes	1	1	0	0	1	1	0	1	0	1	0	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	0	2
Cap, veh/h	729	1094	0	0	902	974	0	4	0	401	0	0
Arrive On Green	0.02	0.59	0.00	0.00	0.48	0.48	0.00	0.00	0.00	0.13	0.00	0.00
Sat Flow, veh/h	1774	1863	0	0	1863	1583	0	11765	0	1774	179	
Grp Volume(v), veh/h	21	174	0	0	63	189	0	0	0	179	18.6	
Grp Sat Flow(s),veh/h/ln	1774	1863	0	0	1863	1583	0	1863	0	1774	B	
Q Serve(g_s), s	0.2	1.8	0.0	0.0	0.8	2.2	0.0	0.0	0.0	4.1		
Cycle Q Clear(g_c), s	0.2	1.8	0.0	0.0	0.8	2.2	0.0	0.0	0.0	4.1		
Prop In Lane	1.00		0.00	0.00		1.00	0.00		0.00	1.00		
Lane Grp Cap (c), veh/h	729	1094	0	0	902	974	0	4	0	401		
V/C Ratio(X)	0.03	0.16	0.00	0.00	0.07	0.19	0.00	0.00	0.00	0.45		
Avail Cap(c_a), veh/h	964	1094	0	0	902	974	0	263	0	627		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(1)	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	1.00		
Uniform Delay (d), s/veh	4.4	4.0	0.0	0.0	5.9	3.6	0.0	0.0	0.0	17.8		
Incr Delay (d2), s/veh	0.0	0.3	0.0	0.0	0.1	0.4	0.0	0.0	0.0	0.8		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
\%ile BackOfQ(95\%),veh/ln	0.2	1.8	0.0	0.0	0.8	2.0	0.0	0.0	0.0	3.7		
LnGrp Delay(d),s/veh	4.4	4.3	0.0	0.0	6.0	4.0	0.0	0.0	0.0	18.6		
LnGrp LOS	A	A			A	A				B		
Approach Vol, veh/h		195			252			0				
Approach Delay, s/veh		4.3			4.5			0.0				
Approach LOS		A			A							
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6	7	8				
Phs Duration ($G+Y+R \mathrm{c}$), s		31.0			4.4	26.6	11.6	0.0				
Change Period ($Y+R \mathrm{c}$), s		6.0			3.5	6.0	6.0	6.0				
Max Green Setting (Gmax), s		25.0			6.5	15.0	11.0	6.0				
Max Q Clear Time ($\left.\mathrm{g}_{\text {c }} \mathrm{c}+11\right)$, s		3.8			2.2	4.2	6.1	0.0				
Green Ext Time (p_c), s		1.7			0.0	1.4	0.2	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			8.5									
HCM 2010 LOS			A									

	7			7			4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{4}$	$\hat{\square}$			\uparrow	「		¢		${ }^{*}$		「
Volume (veh/h)	25	70	0	0	150	205	0	0	0	205	0	20
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $\mathrm{Q}(\mathrm{Qb})$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1900	1863	1863	1900	1863	1900	1863	0	1863
Adj Flow Rate, veh/h	26	74	0	0	158	216	0	0	0	216	0	21
Adj No. of Lanes	1	1	0	0	1	1	0	1	0	1	0	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	0	2
Cap, veh/h	612	1031	0	0	828	953	0	4	0	453	0	0
Arrive On Green	0.02	0.55	0.00	0.00	0.44	0.44	0.00	0.00	0.00	0.16	0.00	0.00
Sat Flow, veh/h	1774	1863	0	0	1863	1583	0	11765	0	1774	216	
Grp Volume(v), veh/h	26	74	0	0	158	216	0	0	0	216	17.5	
Grp Sat Flow(s),veh/h/ln	1774	1863	0	0	1863	1583	0	1863	0	1774	B	
Q Serve(g_s), s	0.3	0.8	0.0	0.0	2.1	2.6	0.0	0.0	0.0	4.8		
Cycle Q Clear(g_c), s	0.3	0.8	0.0	0.0	2.1	2.6	0.0	0.0	0.0	4.8		
Prop In Lane	1.00		0.00	0.00		1.00	0.00		0.00	1.00		
Lane Grp Cap (c), veh/h	612	1031	0	0	828	953	0	4	0	453		
V/C Ratio(X)	0.04	0.07	0.00	0.00	0.19	0.23	0.00	0.00	0.00	0.48		
Avail Cap(c_a), veh/h	845	1031	0	0	828	953	0	269	0	728		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(1)	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	1.00		
Uniform Delay (d), s/veh	5.1	4.3	0.0	0.0	7.0	3.8	0.0	0.0	0.0	16.7		
Incr Delay (d2), s/veh	0.0	0.1	0.0	0.0	0.5	0.6	0.0	0.0	0.0	0.8		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
\%ile BackOfQ(95\%),veh/ln	0.3	0.8	0.0	0.0	2.2	2.3	0.0	0.0	0.0	4.3		
LnGrp Delay(d),s/veh	5.2	4.4	0.0	0.0	7.5	4.4	0.0	0.0	0.0	17.5		
LnGrp LOS	A	A			A	A				B		
Approach Vol, veh/h		100			374			0				
Approach Delay, s/veh		4.6			5.7			0.0				
Approach LOS		A			A							
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6	7	8				
Phs Duration ($G+Y+R \mathrm{c}$), s		29.0			4.5	24.5	12.6	0.0				
Change Period ($Y+R \mathrm{c}$), s		6.0			3.5	6.0	6.0	6.0				
Max Green Setting (Gmax), s		23.0			6.5	13.0	13.0	6.0				
Max Q Clear Time ($\left.\mathrm{g}_{\text {c }} \mathrm{c}+11\right)$, s		2.8			2.3	4.6	6.8	0.0				
Green Ext Time (p_c), s		1.8			0.0	1.2	0.3	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			9.2									
HCM 2010 LOS			A									

8: State Route 28 \& US Route 31 SB Ramp

Intersection								
Intersection Delay, s/veh	5.6							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		195		252		0		200
Demand Flow Rate, veh/h		198		257		0		204
Vehicles Circulating, veh/h		183		21		381		64
Vehicles Exiting, veh/h		85		360		0		214
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		6.0		5.5		0.0		5.3
Approach LOS		A		A		-		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	198		257		0		204	
Cap Entry Lane, veh/h	941		1106		772		1060	
Entry HV Adj Factor	0.982		0.980		1.000		0.980	
Flow Entry, veh/h	195		252		0		200	
Cap Entry, veh/h	924		1084		772		1039	
V/C Ratio	0.210		0.232		0.000		0.192	
Control Delay, s/veh	6.0		5.5		4.7		5.3	
LOS	A		A		A		A	
95th \%tile Queue, veh	1		1		0		1	

8: State Route 28 \& US Route 31 SB Ramp

Intersection								
Intersection Delay, s/veh	6.4							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		100		374		0		237
Demand Flow Rate, veh/h		102		381		0		241
Vehicles Circulating, veh/h		220		27		322		161
Vehicles Exiting, veh/h		182		295		0		247
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		5.1		6.8		0.0		6.3
Approach LOS		A		A		-		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	102		381		0		241	
Cap Entry Lane, veh/h	907		1100		819		962	
Entry HV Adj Factor	0.976		0.981		1.000		0.983	
Flow Entry, veh/h	100		374		0		237	
Cap Entry, veh/h	885		1079		819		946	
V/C Ratio	0.112		0.346		0.000		0.251	
Control Delay, s/veh	5.1		6.8		4.4		6.3	
LOS	A		A		A		A	
95th \%tile Queue, veh	0		2		0		1	

Five (5) Year Development Capacity Results
Signalized Intersection
Roundabout

8: State Route 28 \& US Route 31 SB Ramp

	7			\dagger			4	\dagger			\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	$\hat{+}$			\uparrow	「		¢		${ }^{7}$		F
Volume (veh/h)	60	165	0	0	60	545	0	0	0	465	0	50
Number	5	2	12	1	6	16	3	8	18	7	4	14
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1863	1863	1900	1900	1863	1863	1900	1863	1900	1863	0	1863
Adj Flow Rate, veh/h	63	174	0	0	63	574	0	0	0	489	0	53
Adj No. of Lanes	1	1	0	0	1	1	0	1	0	1	O	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, \%	2	2	2	2	2	2	2	2	2	2	0	2
Cap, veh/h	470	855	0	0	651	1061	0	3	0	701	0	0
Arrive On Green	0.05	0.46	0.00	0.00	0.35	0.35	0.00	0.00	0.00	0.32	0.00	0.00
Sat Flow, veh/h	1774	1863	0	0	1863	1583	0	11765	0	1774	489	
Grp Volume(v), veh/h	63	174	0	0	63	574	0	0	0	489	18.5	
Grp Sat Flow(s),veh/h/ln	1774	1863	0	0	1863	1583	0	1863	0	1774	B	
Q Serve(g_s), s	1.1	3.0	0.0	0.0	1.2	10.2	0.0	0.0	0.0	14.0		
Cycle Q Clear(g_c), s	1.1	3.0	0.0	0.0	1.2	10.2	0.0	0.0	0.0	14.0		
Prop In Lane	1.00		0.00	0.00		1.00	0.00		0.00	1.00		
Lane Grp Cap(c), veh/h	470	855	0	0	651	1061	0	3	0	701		
V/C Ratio(X)	0.13	0.20	0.00	0.00	0.10	0.54	0.00	0.00	0.00	0.70		
Avail Cap(c_a), veh/h	667	855	0	0	651	1061	0	205	0	1142		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(1)	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	1.00		
Uniform Delay (d), s/veh	9.2	8.8	0.0	0.0	11.9	4.6	0.0	0.0	0.0	17.3		
Incr Delay (d2), s/veh	0.1	0.5	0.0	0.0	0.3	2.0	0.0	0.0	0.0	1.3		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
\%\%ile BackOfQ(95\%),veh/ln	1.0	3.0	0.0	0.0	1.2	8.5	0.0	0.0	0.0	11.2		
LnGrp Delay(d),s/veh	9.4	9.3	0.0	0.0	12.2	6.6	0.0	0.0	0.0	18.5		
LnGrp LOS	A	A			B	A				B		
Approach Vol, veh/h		237			637			0				
Approach Delay, s/veh		9.3			7.2			0.0				
Approach LOS		A			A							
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2			5	6	7	8				
Phs Duration ($G+Y+R \mathrm{c}$), s		31.0			6.0	25.0	23.5	0.0				
Change Period ($Y+R \mathrm{R}$), s		6.0			3.5	6.0	6.0	6.0				
Max Green Setting (Gmax), s		25.0			8.5	13.0	31.0	6.0				
Max Q Clear Time (g_c+1), s		5.0			3.1	12.2	16.0	0.0				
Green Ext Time (p_c), s		3.3			0.0	0.3	1.4	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			11.6									
HCM 2010 LOS			B									

8: State Route 28 \& US Route 31 SB Ramp

Intersection								
Intersection Delay, s/veh	10.7							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		237		637		0		542
Demand Flow Rate, veh/h		241		649		0		553
Vehicles Circulating, veh/h		499		64		740		64
Vehicles Exiting, veh/h		118		676		0		649
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		10.0		11.8		0.0		9.8
Approach LOS		A		B		-		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	241		649		0		553	
Cap Entry Lane, veh/h	686		1060		539		1060	
Entry HV Adj Factor	0.981		0.981		1.000		0.980	
Flow Entry, veh/h	237		637		0		542	
Cap Entry, veh/h	673		1040		539		1039	
V/C Ratio	0.351		0.612		0.000		0.522	
Control Delay, s/veh	10.0		11.8		6.7		9.8	
LOS	A		B		A		A	
95th \%tile Queue, veh	2		4		0		3	

8: State Route 28 \& US Route 31 SB Ramp

Intersection								
Intersection Delay, s/veh	18.2							
Intersection LOS	C							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		148		811		0		721
Demand Flow Rate, veh/h		150		827		0		735
Vehicles Circulating, veh/h		660		75		810		161
Vehicles Exiting, veh/h		236		735		0		741
Follow-Up Headway, s		3.186		3.186		3.186		3.186
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		9.7		19.1		0.0		18.8
Approach LOS		A		C		-		C
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Critical Headway, s	5.193		5.193		5.193		5.193	
Entry Flow, veh/h	150		827		0		735	
Cap Entry Lane, veh/h	584		1048		503		962	
Entry HV Adj Factor	0.984		0.980		1.000		0.981	
Flow Entry, veh/h	148		811		0		721	
Cap Entry, veh/h	574		1028		503		944	
VIC Ratio	0.257		0.789		0.000		0.764	
Control Delay, s/veh	9.7		19.1		7.2		18.8	
LOS	A		C		A		C	
95th \%tile Queue, veh	1		9		0		8	

ENGINEERS COMMITTED TO EXCELLENCE DEDICATED TO FULLY SERVE INDIANA COMMUNITIES

INDIANAPOLIS

PNC Center
115 W. Washington St.
Suite 1368 South Tower
Indianapolis, IN 46204
(317) 266-8000

COLUMBUS

50 Washington St.
Suite 2A
Columbus, IN 47201
(812) 376-9252

CROWN POINT

One Professional Ctr.
Suite 314
Crown Point, IN 46307
(219) 663-3410

SOUTH BEND

220 West Colfax Ave.
Suite 500
South Bend, IN 46601
(574) 282-8001

